EM-Sense: Touch Recognition of Uninstrumented, Electrical and Electromechanical Objects (UIST ’15)
EM-Sense is a novel sensing technology for object detection, triggered only when objects are physically touched. Our approach exploits unintentional EM noise emitted by many everyday electrical and electromechanical objects, such as kitchen appliances, computing devices, power tools and automobiles. These signals tend to be highly characteristic, owing to unique internal operations (e.g., brushless motors, capacitive touchscreens) and different enclosure designs, material composition and shielding. When a user makes physical contact with these objects, electrical signals propagate through the user’s body, as it is conductive. By modifying a commodity software-defined radio receiver, we can detect and classify these signals in real time, enabling robust, on-touch object detection. Our approach utilizes low-cost, commodity hardware and is small enough to be worn on the wrist or, in the near future, integrated into smartwatches. Unlike existing approaches requiring object instrumentation (RFIDs, barcodes, BLE beacons, etc.), EM-Sense can identify objects solely on their EM signatures, without the need for additional tags or hardware.
Laput, G., Yang, C., Xiao, R., Sample, A. and Harrison, C. 2015. EM-Sense: Touch Recognition of Uninstrumented, Electrical and Electromechanical Objects. In Proceedings of the 28th Annual ACM Symposium on User interface Software and Technology (Charlotte, North Carolina, November 8 – 11, 2015). UIST ’15. ACM, New York, NY. 157-166.
Fast Company Innovation By Design Award 2016